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Abstract

The goal of this work is to characterize the excited states of a thermoacoustic system with mean flow. The properties

of excited regimes are determined by the balance between thermoacoustic energy transformation and acoustic losses. In

many systems, the sound intensity is not sufficient for nonlinear acoustic losses to be a major factor in defining

nonlinear saturation of thermoacoustic instability. It is the nonlinearity of the heat transfer process that is responsible

for limit-cycle stabilization of linearly unstable acoustic modes and for the appearance of higher harmonics. In the

present study, both a nonlinear theory based on energy consideration and a model for the nonlinear convective heat

transfer in unsteady flow are developed. Experimental data are obtained for the excited regimes of operation of an

electric Rijke tube. Model results for hysteresis in the transition between stable and excited states and for limit-cycle

parameters are compared with test data.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Thermoacoustic instability can arise in chambers of thermal devices where heat release is unsteady. When heat

addition fluctuates in phase with pressure perturbations, the instability is encouraged in accordance with Rayleigh

criterion (Rayleigh, 1945). This phenomenon leads to excitation of acoustic eigenmodes. Thermoacoustic instability is

utilized in thermoacoustic engines (Swift, 1988) and pulsed combustors (Bai et al., 1993), but it is undesirable in most

industrial burners (Pun, 2001) and rocket motors (Culick, 1988), where thermal and acoustic pulsations degrade

operational performance and increase emitted noise. The fundamental mechanisms of thermoacoustic instability can be

studied using a Rijke tube, the simplest system exhibiting heat-driven acoustic oscillations. This device, first built by

Rijke (1859), consists of a pipe (resonator) with a localized heat source and a mean flow. A vertically oriented Rijke

tube is shown schematically in Fig. 1. At certain values of system parameters (gauze location, heat supplied, and flow

rate), a high-intensity sound is generated.

An extensive review on Rijke devices is given by Raun et al. (1993). In order to eliminate some deficiencies of the

previous studies of Rijke tubes, both a series of experiments, aimed at determining the stability boundary with specified

data uncertainties, and a linear stability analysis, including the effects of temperature field nonuniformity, were carried

out by Matveev and Culcik (2003). Within a linear model, however, it is impossible to explain the nonlinear properties

of a Rijke tube, such as limit-cycle characteristics and hysteresis in the stability boundary. A theory for the nonlinear

unsteady heat transfer from a cylinder in the Oseen limit of flow motion was developed by Bayly (1985). An analysis of

the nonlinear acoustic effects in a Rijke tube was carried out by Heckl (1990); an empirical model for the nonlinear

unsteady heat transfer rate was applied with coefficients selected to fit experimental findings. Yoon et al. (2001)
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constructed the two-mode acoustic model for a duct with heat addition, using a phenomenological law for the thermal

response of a concentrated heater to velocity fluctuations.

A nonlinear theory applicable for a wide range of Reynolds numbers (based on a diameter of the wire in the heating

element) was introduced by Matveev and Culick (2002a). That approach, involving a finite-difference method of solving

the wave equation in a media with a nonuniform temperature field, explained hysteresis and predicted the limit-cycle

properties of a self-excited mode. In the present study, a model based on the energy consideration is developed with a

primary objective to obtain analytical expressions for the limit-cycle characteristics of thermoacoustic devices.

Although this model is less accurate than the previous approach (Matveev and Culick, 2002a), it is more convenient for

fast estimation of the nonlinear regimes and for possible implementation of control means. Model results are compared

with experimentally found characteristics of the unstable acoustic mode and excited higher harmonics in an electrically

heated Rijke tube.

2. Theory

2.1. Linear model

Let us consider an idealized one-dimensional Rijke tube shown in Fig. 2. This is a pipe open at both ends with mean

flow and a concentrated heat source, which is a permeable element heated electrically. The heat transfer from this

element to the air-flow is of the forced convection type. All time-averaged properties of an air-flow are treated as

constants along the tube. These properties are evaluated at the spatially averaged temperature T ; which is a function of
the flow rate and input power. A pressure drop over the tube is negligible. Acoustic oscillations are small in amplitude,

allowing us to consider only linear effects. These oscillations are represented via longitudinal acoustic eigenmodes.

Deviation of the excited mode frequencies from corresponding natural frequencies is ignored. Both thermoacoustic

energy input and acoustic losses do not significantly affect the ideal mode shapes. The thickness of the heating element

is much smaller than the acoustic wavelength. Gravity and other body forces are neglected. Gas flow speed is small

compared to the speed of sound.

The linear wave equation approximates pressure perturbations in the air-flow inside the Rijke tube:

@2p0

qt2
þ z

qp0

qt
� a2

@2p0

qx2
¼ ðg� 1Þ

q ’q0

qt
; ð1Þ

where z is the generic damping, a is the speed of sound, g the gas constant, and ’q0 is the rate of unsteady heat addition to

the air-flow per unit volume. Pressure perturbation is considered via decomposition on acoustic eigenmodes (Culick,

1976):

p0 ¼
XN

n¼1

p0n ¼ p0
XN

n¼1

ZnðtÞcnðxÞ; ð2Þ

where p0 is the mean pressure and ZnðtÞ and cnðxÞ are the time-varying amplitude and the mode shape of the nth mode.

Mode shapes are found from the undisturbed homogeneous wave equation:

@2p0

qt2
� a2

@2p0

qx2
¼ 0: ð3Þ
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Fig. 1. Vertically oriented Rijke tube.
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The tube ends are considered to be open, hence the boundary conditions are

p0
��
x¼0¼ p0

��
x¼L

¼ 0; ð4Þ

where L is the effective tube length. The orthogonal mode shapes can be determined from Eqs. (2)–(4):

cnðxÞ ¼ sin ðknxÞ; ð5Þ

where kn ¼ on=a is the wavenumber and on ¼ pna=L is the natural frequency of the nth mode.

The system stability can be found from the stability of individual modes: if at least one mode is unstable, then the

system is unstable. Stability of an individual mode is determined by the net energy addition to this mode. Modes can be

considered separately; we assume that they are linearly uncoupled. Thermoacoustic energy converted from the heat to

the nth acoustic mode per one cycle of oscillation can be found as follows (Culick, 1976):

DEn;added ¼
ðg� 1ÞS

gpo

Z L

0

dx

Z t

0

p0n ’q
0 dt; ð6Þ

where S is the cross-sectional area of the tube and t is the cycle period.
Total heat addition rate ’QðtÞ to the air-flow is conditioned by the heat transfer from the heating element. Since this

heat transfer depends on the Reynolds number, the unsteady part of heat addition (per unit volume) in low Mach

number flows in a linearized form is proportional to the velocity fluctuation u0 (Merk, 1957):

’q0 ¼
’Q0

S
Trlin

u0

u0
dðx � lgÞ; ð7Þ

where ’Q0 is the mean (time-averaged) heat addition rate, u0 is the mean flow velocity; lg is the heater location and d is
the delta function (heater is assumed to be infinitely thin). The coefficient Trlin ¼ jTrlinj exp ð�ijÞ is the linear heat
transfer function; in linear regimes ju0j5u0: In our system the heater consists of a mesh of thin wires, and we apply the
results of a numerical study for the unsteady heat release from a cylinder in a cross-flow (Kwon and Lee, 1985), taking

into account a finite amplitude of velocity fluctuation in the referenced numerical study. The transfer function

magnitude jTrlinj and phase delay j are shown in Fig. 3 as functions of nondimensional parameters u�0 ¼ u0;eff=
ffiffiffiffiffiffi
ow

p
and r� ¼ r

ffiffiffiffiffiffiffiffiffi
o=w

p
; where u0;eff is the effective mean flow velocity accounting for a partial blockage by the heater

components, r is the wire radius, and w is the thermal diffusivity. The magnitude of the transfer function approaches
zero at low mean flow velocities. The phase shift, necessary for thermoacoustic energy conversion, tends to zero at high
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Fig. 2. One-dimensional Rijke tube with a concentrated heat source.
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values of the mean flow velocity. That means there should be an intermediate range of flow velocities favourable for

instability excitation. This is in accordance with test results on the stability boundary (e.g. Raun et al., 1993; Matveev

and Culcik, 2003).

The acoustic velocity is related to the pressure perturbation as u0 ¼ ip0x=or0: Time-varying amplitude of the nth mode

is assumed to have form ZnðtÞ ¼ An sin ðontÞ: Substituting Eqs. (2) and (7) into (6), and integrating over a chamber
volume and a cycle period, we find that thermoacoustic energy added to the nth mode during one cycle of oscillation is

DEn;added ¼
g� 1
g

p
2

jTrlinj ’Q0p0SA2n
amon

sin ðjnÞ sin ð2 knlgÞ; ð8Þ

where m is the mass flow rate and jn is the phase delay of the transfer function corresponding to the nth mode. Since the

phase shift is always less than 90� in our system, a sign of the added energy is determined by the last multiplier in

Eq. (8), which in turn is dependent on the mode number and a heater location. From this equation, it directly follows

that the first mode can be excited if the heater is in the upstream half of the tube; the positions of the heater favourable

for the second mode instability are the first and the third quarter of the tube; and so on for higher modes. This is in

accordance with all previous experimental studies, e.g. Rijke (1859) and Raun et al. (1993), as well as the present

investigation.

The loss of acoustic energy during one cycle of oscillation is due to the acoustic boundary layer on the tube walls and

sound radiation from the open tube ends. These components are calculated with standard approximate expressions (e.g.

Howe, 1998):

DEn;bl ¼
p

2
ffiffiffi
2

p p0PLA2n
g
ffiffiffiffiffiffi
on

p ffiffiffi
n

p
þ ðg� 1Þ

ffiffiffi
w

p� �
; ð9Þ

DEn;sr ¼
1

2

onp0S
2A2n

ga
; ð10Þ

where P is the perimeter of a tube cross-section, and n is the kinematic viscosity. By using Eq. (10) we assume that
wavelength is large compared to the tube diameter; that is valid for low acoustic eigenmodes. When the Mach number

of the mean flow is high enough, the mechanism of acoustic power loss due to convection may become important

(Ingard and Singhal, 1975). Since we consider only low Mach number flows, this effect can be neglected in this study.

At fixed heater location and mass flow rate, the onset of thermoacoustic instability occurs when the input electric

power P becomes sufficiently high, making thermoacoustic energy addition, Eq. (8), equal to the acoustic energy losses,

found from Eqs. (9) and (10). A part of the electric power P is not delivered to the air-flow, because of the heat

conduction through insulation frame to the tube walls and thermal radiation. The relation between P and ’Q0 will be

given later in the experimental section of this paper.

2.2. Nonlinear model

The goal of this section is to derive a reduced-order model that approximates major nonlinear mechanisms with a

purpose of predicting the properties of excited states of a Rijke tube. The possible causes for saturating the limit cycle of

a linearly unstable mode are nonlinear gasdynamics effects at high amplitudes of acoustic oscillations, nonlinear

boundary conditions at the tube edges due to flow separation, and a nonlinear character of the heat transfer process.

Matveev and Culick (2002a) have established that the first two effects are very weak in our system due to low Mach

number flows ðMB10�3Þ and a given geometry, so these mechanisms cannot limit sound amplitudes at the levels found
during the tests. However, in the systems with different specifications, it is possible to have a situation when nonlinear

losses play an important role in determining the saturation of acoustic instability, such as in the study by Heckl (1990).

During the tests in our system, it was observed that the oscillating velocity amplitude (estimated in the heater vicinity)

tends to stabilize near the mean flow velocity, slightly exceeding it. This observation shows that an appearance of the

flow reversal at the heat source may be critical for nonlinear modelling of heat addition. Throughout this section we will

use two additional assumptions: first, the coupling between acoustic modes due to nonideal boundary conditions,

damping, and nonlinear acoustics is so small that it can be ignored; and second, each acoustic mode responds only to

the forcing with a frequency close to its natural frequency.

The nonlinear transfer function Tr to be used for modelling the flows with a finite acoustic amplitude is defined as

follows:

’q0o ¼
’Q0

S
Tr

u0o
u0

dðx � lgÞ; ð11Þ
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where fo designates a component of the function f oscillating with frequency o: A new hypothesis is invoked for a
special form of Tr: It is assumed that the effects of a finite amplitude and a frequency can be separated:

Trðo; aÞ ¼ GðaÞTrlinðoÞ; ð12Þ

where GðaÞ is the nonlinear correction to the transfer function; the nonlinear parameter a ¼ ðu01=u0Þx¼lg is the ratio of

acoustic velocity amplitude to the mean flow velocity estimated at the heater plane. The specific form (12) is adopted to

derive the nonlinear transfer function analytically. There is no underlying physics that can justify this assumption.

However, this idea is somewhat similar to the method of describing functions successfully applied in the nonlinear

control system theory (e.g. Eveleigh, 1972), where the output is assumed to be proportional to the input (the same

frequency) with a coefficient depending on the oscillation amplitude.

To derive an expression for GðaÞ; let us start from considering steady flow. The heat transfer rate valid for our system
in this case has a form typical for convective heat transfer (Matveev and Culcik, 2003):

’Qst ¼ K
ffiffiffiffiffi
u0

p
; ð13Þ

where superscript st means steady and coefficient K is proportional to the temperature difference between the air-flow

and the heater. For the case of unsteady flow with an oscillating component having a very low frequency, the flow is in a

quasi-steady regime. In this case, the momentary heat transfer rate can be computed using the formula valid for steady

flow and substituting the instantaneous flow velocity into the right-hand side of Eq. (13). In the following derivation, we

assume that the time-averaged (mean) heat transfer rates for the unsteady and quasi-steady regimes are equal.

Thus, the quasi-steady heat transfer rate can be approximated by a simple rule:

’QqsðtÞ ¼ K
ffiffiffiffiffiffiffiffiffiffi
juðtÞj

p
; ð14Þ

where superscript qs means quasi-steady and uðtÞ ¼ u0 þ u0ðtÞ is the total flow velocity in the heater vicinity. Eq. (14)
implies that the heat release does not depend on the flow direction and is determined only by a magnitude of the flow

velocity. This form of the heat transfer rate is appropriate for typical Rijke tubes, where the temperature of the gas

pockets that crossed the heater plane remains significantly lower than the heater temperature.

In principle, other forms for the quasi-steady heat release rate can be used. For example, in the situation where gas is

heated nearly up to the temperature of the gauze, which could happen at sufficiently low flow rates, the heat transfer

rate can be taken equal to zero during time intervals when the total velocity at the heater is negative, i.e., when flow

reversal occurs. A more sophisticated approach would introduce a reduction of the heat release rate proportional to the

reduction in temperature difference between gas and a hot grid. In this case, flow pockets must be traced in space and

time, and the heat release rate would become a complicated function of time due to sinusoidal variation of the flow

velocity, a nonlinear form of the heat transfer rate, and multiple crossing of the heater plane by flow particles. For

clarity of the mathematical formulation, we decided to use the simplest form for the quasi-steady heat transfer rate,

Eq. (14), that should help explain the major nonlinear characteristics of a Rijke tube.

Notice that in the regime approaching a quasi-steady case, the time delay induced by the transfer function tends to

zero. As follows from definitions introduced in the previous section, r�-0 and u�0-N as o-0: In these limits, as can
be seen in Fig. 3b, the phase delay j goes to zero. Therefore, Eqs. (11) and (14) are compatible.
As follows from Eqs. (7) and (14), Tr

qs
lin ¼

1
2
in the linear quasi-steady regime; therefore, from Eq. (12) we obtain

GðaÞ ¼ 2TrqsðaÞ: The nonlinear quasi-steady transfer function Trqs can be found using Eqs. (11) and (14) and assuming

a sinusoidal function for the oscillating velocity component u0ðtÞ ¼ u0a sin ðotÞ:

’Qqs
o ðtÞ
’Q

qs
0

� 1 ¼ Trqsa sin ðotÞ: ð15Þ

Taking a Fourier component corresponding to the frequency o; we find the nonlinear correction GðaÞ:

GðaÞ ¼
4

at

Z t

0

’Qqs
o ðtÞ
’Q

qs
0

� 1

 !
sin ðotÞ dt: ð16Þ

The computed dependence of GðaÞ on the nonlinear parameter is shown in Fig. 4a. Notice that Gð0Þ ¼ 1; i.e.,
TrqsðaÞ-1

2
as a-0: When the nonlinear parameter significantly exceeds unity, the nonlinear transfer function

monotonically decreases; hence, further development of thermoacoustic instability is discouraged. This property causes

saturation of the limit cycles deep in the excited regimes.
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The fact that GðaÞ increases at small amplitudes of the acoustic velocity is due to the nonlinear form of the quasi-

steady heat release rate (Eq. (14)). The mean heat transfer rate ’Q
qs
0 decreases in the range 0oao1 (no flow reversal yet).

The transfer function Tr is proportional to the ratio between the unsteady and mean components of the heat transfer

rate; this results in the increase of GðaÞ in this interval of nonlinear parameter a: A physically similar dependence was
derived by Bayly (1985) in the limit of the small Peclet number based on the wire radius.

Nonmonotonic behaviour of GðaÞ in the range 0oao2 leads to the remarkable results. The magnitude of the transfer
function affects the effectiveness of the thermal-to-acoustic energy conversion (Eq. (8)): the larger the transfer function,

the more significant is the unsteady component of the heat transfer rate. Due to nonmonotonic shape of the nonlinear

transfer function, the same energy input into the acoustic mode can occur for more than one value of the amplitude of

acoustic oscillations. This energy addition compensates acoustic losses, and hence, leads to the existence of the

equilibrium limit cycles. Initially, the transfer function grows with increasing amplitude of the acoustic velocity

fluctuation; therefore, the linearly stable system may also have two excited equilibrium states: one corresponds to the

inclining part of the transfer function curve ð0oao1Þ and the other to the declining portion ða > 1Þ: The equilibrium
limit cycle, corresponding to the increasing branch of Tr; is unstable, because at a small deviation from this point the
increment of thermoacoustic energy conversion has a sign opposite to that needed to return the system into the

equilibrium state. Another equilibrium limit cycle, corresponding to the declining branch of Tr; is stable, since in this
case the energy input to the acoustic mode varies in the way to prevent a deviation from the equilibrium point. Because

of the existence of multiple equilibrium states in the vicinity of the stability boundary, the system condition is dependent

on the history of parameter variation; this phenomenon is identified as hysteresis.

Due to a nonlinear character of the heat transfer, an oscillatory flow produces higher harmonics in the heat release.

The amplitudes of these harmonics can be computed by formula:

’Qn ¼
2

t

Z t

0

’QqsðtÞ exp ðin otÞdt

����
����: ð17Þ

Higher harmonics of heat addition can excite higher acoustic eigen modes of the system. The amplitudes ’Qnða1Þ of the
second and third harmonics are depicted in Fig. 4b as functions of the nonlinear parameter a1 of the first mode.
Thus, we identified a dominant mechanism that saturates limit cycles and determined the nonlinear correction to the

heat transfer function. The amplitude of the unstable mode in excited regimes can be evaluated from Eqs. (8)–(10),

similar to the linear case, but with corrected transfer function. We will assume here that only the first mode can be self-

excited, which is relevant to our experimental configuration. However, the same theory is applicable for the cases when

higher modes are linearly unstable. An implicit equation for the nonlinear parameter a1; corresponding to the
equilibrium limit cycle of the first mode, is the following:

Gða1Þ ¼ m
pPLa

ffiffiffiffiffiffi
o1

p ffiffiffi
n

p
þ ðg� 1Þ

ffiffiffi
w

p� �
þ

ffiffiffi
2

p
o21S

2ffiffiffi
2

p
ðg� 1ÞpjTrlinj ’Q0S sin j1sin ð2k1lgÞ

: ð18Þ
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The complex-valued amplitude of this mode is determined from the definition of the nonlinear parameter and the

acoustic velocity mode shape:

A1 ¼ �ia1
u0gk21
o1

dc1
dx

ðlgÞ

 ��1

: ð19Þ

Due to nonlinearity of the heat transfer process, higher harmonics in the heat release appear when one mode becomes

unstable and oscillates with a finite amplitude. These harmonics, having amplitudes computed by Eq. (17), drive higher

acoustic modes, since the frequencies of heat release components are close to the natural frequencies of acoustic modes;

in our idealized model these frequencies match exactly. Energy input into the nth mode caused by this phenomenon can

be found by substituting Eq. (17) into (6):

DEn;nonl ¼
g� 1
g

p ’Qnða1ÞAn

on

sin ðknlgÞ: ð20Þ

The resulting amplitude of the nth mode is determined from energy balance:

DEn;added þ DEn;nonl ¼ DEn;bl þ DEn;sr; ð21Þ

where energy inputs are evaluated by Eqs. (8)–(10) and (20). Substituting these formulae into (21), we can find the nth

mode amplitude as a function of nonlinear parameters of the first and nth modes:

An ¼
Bn

’Qnða1Þ
Cn � DnGðanÞ

; ð22Þ

where

Bn ¼ 2
ffiffiffi
2

p
pðg� 1Þam sin ðknlgÞ; ð23Þ

Cn ¼ pp0 amPL
ffiffiffiffiffiffi
on

p ffiffiffi
n

p
þ ðg� 1Þ

ffiffiffi
w

p� �
þ

ffiffiffi
2

p
p0 mo2nS2; ð24Þ

Dn ¼
ffiffiffi
2

p
pðg� 1Þp0 jTrlinj ’Q0S sin ðjnÞ sin ð2knlgÞ: ð25Þ

To calculate the amplitudes of acoustic modes in the unstable regimes of operation of the Rijke tube, first, the

amplitude of the self-excited mode is computed by Eq. (18), and then, higher mode amplitudes are found by solving

Eq. (22) iteratively.

3. Experimental set-up

The experimental Rijke tube system employed in our study is schematically depicted in Fig. 5. The important

elements of the system are outlined in this section; more detailed information can be found elsewhere (Matveev and

Culcik, 2003). The horizontally oriented Rijke tube is a square aluminium tube of 9.5	 9.5 cm cross-section and length
1.0m. Mean air-flow is provided by a blower. A damping chamber, located between the tube and blower, prevents the

influence on the blower from tube acoustics. The flow direction is from right to left.
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The heat source is a nichrome grid with a wire diameter of 0.01 in. It is suspended on a macor frame and connected to

the power source via copper rods. The power source consists of two TCR-20T250 power supplies, each capable of

producing 500 amps of current. Heater position can be easily changed within the tube, even though in this study we use

only one location of one quarter of the tube length from the upstream end.

The mean air-flow through the Rijke tube is provided by a GAST R1102 blower, with a maximum throughput of

0.0127m3/s at standard conditions. The blower is operated at full capacity with a 2 in. by-pass ball valve controlling the

amount of air drawn through the damping chamber. The flow rate is measured using a laminar flow element (Meriam

50MW20) and a differential pressure transducer (Honeywell Microswitch). This measurement takes place between the

damping chamber and the blower.

The pressure transducers used were PCB model 112A04, coupled with a 422D11 charge amplifier and a 482A20 signal

conditioner. Charge-mode piezoelectric transducers were utilized, since the majority of the electronics is located in a

separate charge amplifier, increasing the operating temperature range while retaining relatively high sensitivities. The

two pressure transducers, flush mounted in the tube at positions x/L=0.15 and 0.80, are labelled 1 and 2, respectively

(Fig. 5).

The data acquisition system is based on a Pentium III 700MHz computer. A Computer Boards’ CIO-DAS1602/12

data acquisition board is installed in the machine. In this configuration, data could be acquired in short bursts at over

8000Hz, and for extended periods of time streaming to the hard drive at over 4000Hz. For this configuration of the

Rijke tube, the frequency of the self-excited mode is approximately 180Hz, and the frequencies of two higher harmonics

are about 360 and 540Hz. These frequencies are easily captured at the rates capable by the data acquisition system.

An array of 15 thermocouples is suspended from the top of the tube to the centre-line. Thermocouples are used solely

for time-averaged temperature measurements. Not all electric power supplied to the heater is delivered to the air-flow; a

significant portion is lost via heat conduction to the tube walls and via thermal radiation. Complicated numerical heat

transfer analysis, generating a temperature field inside the Rijke tube and the heat fluxes, has been developed by

Matveev and Culick (2002b). In this study, we use correlations for the spatially averaged temperature T and for the

mean heat transfer rate ’Q0 from the heater to the air-flow as functions of the electric power input P and the mean mass

flow rate m:

T ¼ T0 þ b1P
b2 exp ð�b3mÞ; ð26Þ

’Q0 ¼ c1P
c2 ð1� exp ð�c3mÞÞ; ð27Þ

where the numerical values of power P in Watts and mass flow rate m in gm/s are substituted into the right-hand side of

Eqs. (26) and (27). Coefficients have the following values: T0 ¼ 300; b1 ¼ 0:579; b2 ¼ 0:849; b3 ¼ 0:189; c1 ¼ 2:07;
c2 ¼ 0:805; and c3 ¼ 1:01:Dimensions of the temperature T and the heat transfer rate ’Q0 are degrees Kelvin and Watts,

respectively. Relations (26) and (27) are purely empirical and not based on any physical model. The general form is

chosen to satisfy asymptotic limits, and the coefficients are selected to minimize correlation errors within the range of

system parameters typical for conditions studied.

4. Results

In the present study, one of the primary system parameters, the heater location, is kept fixed. The heating element is

placed inside the pipe at one quarter of the tube length as measured from the upstream end. This position is the most

favourable for excitation of thermoacoustic instability, and hence, the most convenient for studying the unstable

regimes and the nonlinear effects. Test data and model results are reported for pressure fluctuation measured at location
3
20
of the tube length from the upstream end; one of the pressure transducers was mounted there during the tests.

Temperature field varies insignificantly with power and flow rate at this position for various system conditions.

Although the selected location is not very far from the tube edge, no efforts were made to estimate the possible influence

of the tube end effects on test results.

Let us first look at the history-dependent phenomena observed in the experiments and predicted by the model. Test

data, typical for the transition to instability at high flow rates, are shown in Fig. 6a. We define the critical power as a

power value at which the jump occurs from one state (stable or excited) to the other. A large gap is discovered between

the critical powers that correspond to the opposite directions of power variation. This effect is identified as hysteresis at

the stability boundary. Although not shown in the figure, there is also a stable zero-amplitude state on a lower side of

the hysteresis loop, corresponding to the power increase up to 585W where the transition to the excited state occurs.

The choice of a particular state within the hysteresis loop is determined by the history of parameter variation.
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The results obtained by modelling show a qualitatively similar pattern (Fig. 6b), though a quantitative agreement

with test data is not achieved. The nonmonotonic shape of the transfer function, discussed in Section 2.2, can lead to the

presence of three equilibrium limit cycles for the same values of the major system parameters. These limit cycles

predicted by the model are manifested in Fig. 6b in the power range from 570 to 1060W. One stable state has a zero

amplitude; the second equilibrium is unstable and depicted by a dotted line; and the third equilibrium limit cycle is

stable with an amplitude near 100Pa. The horizontal dimension (power) of the calculated hysteresis loop is significantly

larger than that measured; and the vertical size (sound amplitude) of the predicted loop is smaller than that obtained in

the test.

At low-mass flow rates, experimental findings demonstrate a different pattern. History-dependent effects are not

observed. In a certain power range, there is a regime that cannot be classified as either stable or excited, because sound

sporadically appears and disappears. In Fig. 7a this regime corresponds to the interval 165–170W; the records captured

ARTICLE IN PRESS

Fig. 6. Limit-cycle amplitudes of the first mode: (a) test data (W power increase, X power decease); (b) test data and model results

(bold lines, stable limit cycles; dashed line, unstable). Mass flow rate 2.75 gm/s. Arrows show the direction of sound amplitude

variation with changing power input: dashed arrows, test; solid arrows, model.

Fig. 7. Limit-cycle amplitudes of the first mode: (a) test data (W power increase, X power decease); (b) test data and model results

(bold line, stable limit cycle; dashed line, unstable). Mass flow rate 0.89 gm/s.
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within this range are arbitrary. The model still generates hysteresis (Fig. 7b). Notice that the experimental transition to

instability and a modelled hysteresis loop do not overlap in this case. Possible reasons for this inconsistency in

predicting the critical power at low flow rates are higher temperature gradients in the system, more significant

contribution from natural convection at the gauze, and an increased role of air leakages in other system components.

ARTICLE IN PRESS

Fig. 8. Sound pressure level and frequency of acoustic modes. Mass flow rate 1.63 gm/s. (a), (b) First mode; (c), (d) second mode;

(e), (f) third mode. Solid lines, model results; test data: W power increase, X power decrease.

Fig. 9. Sound pressure level and frequency of acoustic modes. Mass flow rate 2.40 gm/s. (a), (b) First mode; (c), (d) second mode;

(e), (f) third mode. Solid lines, model results; test data: W power increase, X power decrease.
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The theory developed here helps to explain hysteresis in the stability boundary, although it overpredicts the gap

between critical power values. We believe that the most likely cause for this discrepancy is a noise component in the air-

flow. Variations of the flow rate even in stable regimes are around 10% (Matveev and Culcik, 2003). Those

perturbations may be caused by the system structural elements disturbing the flow, such as the heater and the sharp

edges of the tube entrance; also, fluctuations in the air sucked from outside the tube may be important. The presence of

noise may trigger early transitions between stable and excited states. This mechanism would explain the overprediction

of the observed gap between critical powers, corresponding to the opposite directions of power variation at high-mass

flow rates (Fig. 6b). At low flow rates, the relative noise component in the flow rate is larger than that at high flow rates;

also, the predicted hysteresis loop is smaller. These two effects combined can make the hysteresis phenomenon

disappear, similar to experimental observations (Fig. 7a).

Now we look at the properties of the excited regimes of the Rijke tube far from the stability boundary.

Experimentally and numerically found amplitudes and frequencies of the first three acoustic modes is given in Figs. 8

and 9 for two mass flow rates 1.63 and 2.40 gm/s. An agreement between calculated and measured amplitude of the first

mode is acceptable. The amplitude of the second mode is computed satisfactorily only for some values of the system

parameters. Due to the nonmonotonic behaviour of the heat release harmonics that drive higher acoustic modes, a drop

in the amplitude of the second mode is predicted near 200W for the first flow rate; this is in agreement with the test

data. For the second flow rate, this dip appears near 550W, that does not correlate with experimental results. The

amplitude of the third mode is significantly overpredicted.

Thus, the theory developed here can be applied for quantitative estimation of the amplitude of the first self-excited

mode and for qualitative assessment of the second harmonic in the unstable regimes of operation of a Rijke tube.

Possible reasons for compromising the accuracy of higher mode prediction are the major model assumptions, such as a

simple model for the heat transfer process at the presence of finite-amplitude velocity fluctuations (Eqs. (12), (14) and

(17)), a disregard of mode shape distortion induced by temperature gradients, and a neglect of the damping chamber

influence on the tube acoustics.

The mode frequencies presented in Figs. 8 and 9 are computed as functions of the system geometry and one

variable parameter, spatially averaged temperature (Eq. (26)). Frequencies of higher harmonics are multiple integers

of the first-mode frequency. This simple approach to determine the mode frequencies in the excited regimes of

operation gives satisfactory agreement with experimental data. The rate of increase of modelled frequencies with

heater power appears to be higher than that in the test. One of the reasons is the temperature field nonuniformity in a

real situation that modifies natural frequencies. Also, frequencies observed in the limit cycles usually do not exactly

coincide with natural frequencies; in this work, nonlinear factors are not accounted for calculating frequency

correction.

5. Concluding remarks

In order to explain nonlinear effects of an electric Rijke tube, a simple theory is constructed using an energy

approach. The equilibrium states of the system are found by balancing thermoacoustic energy input and acoustic losses.

The excited regimes of this device are studied experimentally for one heater location and for variable power input and

flow rate. The limit cycles of the acoustic modes are computed and compared with experimental data. To validate the

general applicability of this theory, nonlinear effects should be studied at other heater locations, including those where

higher eigenmodes cause the transition to instability. Such work is in progress and will be a subject of a later

publication.

The ideas and methods discussed in this paper provide a better understanding of thermoacoustic instabilities. It is

found that nonlinearity of unsteady heat transfer is a dominant factor in limiting limit-cycle saturation in our system.

Nonlinear acoustic losses may become important, if sound intensity can reach higher values. The hysteresis effect in the

stability boundary, characteristic for many thermal systems with unsteady heat release, is explained by the

nonmonotonic behaviour of the heat transfer function. Analytical framework derived in this work allows for

quantitative prediction of the properties of a linearly unstable mode deep in the excited regimes of operation of a Rijke

tube and for qualitative estimation of higher modes.

Possible directions for future work include studying systems with more complicated heat addition mechanisms

(e.g. combustion in burners) and noncompact heat sources (e.g. stacks in thermoacoustic engines). Detailed

investigation of the heat transfer in pulsating flows, employing both experiments and CFD methods, would be an

important step in improving the model accuracy. Application of active control techniques can be conveniently studied

using a Rijke tube as the simplest thermoacoustic device.
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